246 research outputs found

    До питання про походження імені язичеської богині Мокоша

    Get PDF
    Приводяться екстралінгвістичні та лінгвістичні докази, що Мокоша пов’язана з водою. Виявлено лексична спорідненість цього ім’я не тільки з індоєвропейськими, але й семітськими мовами. На основі аналізу структурних компонентів слів, які мають спільну сему “вода” та подібність у звучанні, у досліджуваному слові виділено етимологічний корінь о-(а), префікс м- і суфікси -к - і -ош(а). Ключові слова: глубинна етимологія, Мокоша, загальна сема, подібні структурні компоненти, індоєвропейські, семітські мови.Приводятся экстралингвистические и лингвистические доказательства, что Мокоша связана с водой. Обнаружено лексическое родство этого имени не только с индоевропейскими, но и семитскими языками. На основе анализа структурных компонентов слов, которые имеют общую сему “вода” и сходство в звучании, в исследуемом слове выделено этимологический корень о-(а-), префикс м- и суффиксы -к - и -ош(а). Ключевые слова: глубинная этимология, Мокоша, общая сема, похожие структурные компоненты, индоевропейские, семитские языки.Extra-linguistic and linguistic arguments are adduced that Mokosha is connected with water. The lexical affinity of this name was established both with Indo-European and Semitic languages. On the basis of the analysis of structural components of the words which have the common seme “water” and show resemblance in sounding, the etymological root o-(a-), prefix m- and suffixes -k- and -osh(a) were singled out in the investigated word. Keywords: deep etymology, Mokosha, common seme, similar structural components, Indо- European, Semitic languages

    Inhaled alpha 1 -proteinase inhibitor therapy in patients with cystic fibrosis

    Get PDF
    Inhaled alpha1-proteinase inhibitor (PI) is known to reduce neutrophil elastase burden in some patients with CF. This phase 2a study was designed to test inhaled Alpha-1 HC, a new aerosolized alpha1-PI formulation, in CF patients

    Early Elevation of Matrix Metalloproteinase-8 and -9 in Pediatric ARDS Is Associated with an Increased Risk of Prolonged Mechanical Ventilation

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMP) -8 and -9 may play key roles in the modulation of neutrophilic lung inflammation seen in pediatric Acute Respiratory Distress Syndrome (ARDS). We aimed to perform a comprehensive analysis of MMP-8 and MMP-9 activity in tracheal aspirates of pediatric ARDS patients compared with non-ARDS controls, testing whether increased MMP-8 and -9 activities were associated with clinical outcomes. METHODS: Tracheal aspirates were collected from 33 pediatric ARDS patients and 21 non-ARDS controls at 48 hours of intubation, and serially for those who remained intubated greater than five days. MMPs, tissue inhibitor of metalloproteinases (TIMPs), human neutrophil elastase (HNE) and myeloperoxidase (MPO) activity were measured by ELISA, and correlated with clinical indicators of disease severity such as PRISM (Pediatric Risk of Mortality) scores, oxygen index (OI), multi-organ system failure (MOSF) and clinical outcome measures including length of intubation, ventilator-free days (VFDs) and mortality in the Pediatric Intensive Care Unit (PICU). RESULTS: Active MMP-9 was elevated early in pediatric ARDS subjects compared to non-ARDS controls. Higher MMP-8 and active MMP-9 levels at 48 hours correlated with a longer course of mechanical ventilation (r = 0.41, p = 0.018 and r = 0.75, p<0.001; respectively) and fewer number of VFDs (r = -0.43, p = 0.013 and r = -0.76, p<0.001; respectively), independent of age, gender and severity of illness. Patients with the highest number of ventilator days had the highest levels of active MMP-9. MMP-9 and to a lesser extent MMP-8 activities in tracheal aspirates from ARDS subjects were sensitive to blockade by small molecule inhibitors. CONCLUSIONS: Higher MMP-8 and active MMP-9 levels at 48 hours of disease onset are associated with a longer duration of mechanical ventilation and fewer ventilator-free days among pediatric patients with ARDS. Together, these results identify early biomarkers predictive of disease course and potential therapeutic targets for this life threatening disease

    Clinical trial of a probiotic and herbal supplement for lung health

    Get PDF
    IntroductionDysbiosis of the gut microbiome may augment lung disease via the gut-lung axis. Proteobacteria may contribute to tissue proteolysis followed by neutrophil recruitment, lung tissue injury, and perpetuation of chronic inflammation. To study the effects of probiotics across the gut-lung axis, we sought to determine if a Lactobacillus probiotic and herbal blend was safe and well-tolerated in healthy volunteers and asthmatic patients.MethodsWe conducted a 1-month randomized, open-label clinical trial in Cork, Ireland with healthy and asthmatic patients who took the blend twice a day. The primary endpoint was safety with exploratory endpoints including quality of life, lung function, gut microbiome ecology, and inflammatory biomarkers.ResultsAll subjects tolerated the blend without adverse events. Asthmatic subjects who took the blend showed significant improvements in lung function as measured by forced expiratory volume and serum short chain fatty acid levels from baseline to Week 4. The gut microbiome of asthmatic subjects differed significantly from controls, with the most prominent difference in the relative abundance of the proteobacteria Escherichia coli. Administration of the probiotic maintained overall microbial community architecture with the only significant difference being an increase in absolute abundance of the probiotic strains measured by strain-specific PCR.ConclusionThis study supports the safety and efficacy potential of a Lactobacillus probiotic plus herbal blend to act on the gut-lung axis. However, due to the lack of a control group, a longer blinded, placebo-controlled study will be warranted to confirm the efficacy improvements observed in this trial.Clinical trial registrationhttps://clinicaltrials.gov/, identifier NCT05173168

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    The inflammatory chemokine Cxcl18b exerts neutrophil-specific chemotaxis via the promiscuous chemokine receptor Cxcr2 in zebrafish

    Get PDF
    Cxcl18b is a chemokine found in zebrafish and in other piscine and amphibian species. Cxcl18b is a reliable inflammatory marker; however, its function is yet to be elucidated. Here, we found that Cxcl18b is chemotactic towards neutrophils, similarly to Cxcl8a/Interleukin-8, the best characterised neutrophil chemoattractant in humans and teleosts. Like Cxcl8a, Cxcl18b-dependent recruitment required the chemokine receptor Cxcr2, while it was unaffected by depletion of the other two neutrophil receptors cxcr1 and cxcr4b. To visualise cxcl18b induction, we generated a Tg(cxcl18b:eGFP) reporter line. The transgene is induced locally upon bacterial infection with the fish pathogen Mycobacterium marinum, but strikingly is not directly expressed by infected cells. Instead, cxcl18b is induced by non-phagocytic uninfected cells that compose the stroma of the granulomas, typical inflammatory lesions formed upon mycobacterial infections. Together, these results suggest that Cxcl18b might be an important contributor to neutrophil chemotaxis in the inflammatory microenvironment and indicate that the zebrafish model could be explored to further investigate in vivo the biological relevance of different Cxcl8-like chemokine lineages

    A Real-Time PCR Antibiogram for Drug-Resistant Sepsis

    Get PDF
    Current molecular diagnostic techniques for susceptibility testing of septicemia rely on genotyping for the presence of known resistance cassettes. This technique is intrinsically vulnerable due to the inability to detect newly emergent resistance genes. Traditional phenotypic susceptibility testing has always been a superior method to assay for resistance; however, relying on the multi-day growth period to determine which antimicrobial to administer jeopardizes patient survival. These factors have resulted in the widespread and deleterious use of broad-spectrum antimicrobials. The real-time PCR antibiogram, described herein, combines universal phenotypic susceptibility testing with the rapid diagnostic capabilities of PCR. We have developed a procedure that determines susceptibility by monitoring pathogenic load with the highly conserved 16S rRNA gene in blood samples exposed to different antimicrobial drugs. The optimized protocol removes heme and human background DNA from blood, which allows standard real-time PCR detection systems to be employed with high sensitivity (<100 CFU/mL). Three strains of E. coli, two of which were antimicrobial resistant, were spiked into whole blood and exposed to three different antibiotics. After real-time PCR-based determination of pathogenic load, a ΔCt<3.0 between untreated and treated samples was found to indicate antimicrobial resistance (P<0.01). Minimum inhibitory concentration was determined for susceptible bacteria and pan-bacterial detection was demonstrated with 3 Gram-negative and 2 Gram-positive bacteria. Species identification was performed via analysis of the hypervariable amplicons. In summary, we have developed a universal diagnostic phenotyping technique that assays for the susceptibility of drug-resistant septicemia with the speed of PCR. The real-time PCR antibiogram achieves detection, susceptibility testing, minimum inhibitory concentration determination, and identification in less than 24 hours
    corecore